Address

Dept. of Electrical Engineering and Information Technology (EIM-E)
Paderborn University
33098 Paderborn, Germany

Contact Information

Call: +49 (5251) 60-3181

Email: tanuj.hasija@sst.upb.de

Room: P1.7.13.3

Dr.-Ing. Tanuj Hasija

Lecturer (Akademischer Rat)

Signal and System Theory Group

Education

  1. 2021

    Dr.-Ing. (Ph.D.)

    Paderborn University
  2. 2015

    M.Sc. (Electrical Systems Engineering)

    Paderborn University
  3. 2013

    B.Sc. (Electrical Engineering)

    Guru Gobind Singh Indraprastha University, India

List of Publications

Journal Articles

[1]

S. Vieluf, T. Hasija, P.J. Schreier, R. El Atrache, S. Hammond, F.M. Touserkani, R.A. Sarkis, T. Loddenkemper and C. Reinsberger

Generalized tonic-clonic seizures are accompanied by changes of interrelations within the autonomic nervous system

Epilepsy & Behavior, vol. 124, pp. 108321, Elsevier, 2021
[2]

T. Hasija, T. Marrinan, C. Lameiro and P.J. Schreier

Determining the dimension and structure of the subspace correlated across multiple data sets

Signal Processing, vol. 176, Elsevier, 2020
[3]

S. Vieluf, T. Hasija, R. Jakobsmeyer, P.J. Schreier and C. Reinsberger

Exercise-induced changes of multimodal interactions within the autonomic nervous network

Frontiers in physiology, vol. 10, Frontiers, 2019
[4]

S. Vieluf, V. Scheer, T. Hasija, P.J. Schreier and C. Reinsberger

Multimodal approach towards understanding the changes in the autonomic nervous system induced by an ultramarathon

Research in Sports Medicine, pp. 1-10, Taylor & Francis, 2019
[5]

T. Hasija, C. Lameiro and P.J. Schreier

Determining the dimension of the improper signal subspace in complex-valued data

IEEE Signal Process. Lett., vol. 24, pp. 1606-1610, 2017
[6]

Y. Song, P.J. Schreier, D. Ramírez and T. Hasija

Canonical correlation analysis of high-dimensional data with very small sample support

Signal Process., vol. 128, pp. 449-458, 2016

Conference Articles

[1]

T. Hasija and T. Marrinan

A GLRT for estimating the number of correlated components in sample-poor mCCA

In Proc. 30th European Signal Processing Conference (EUSIPCO), pp. 2091-2095, 2022
[2]

I. Lehmann, E. Acar, T. Hasija, M. Akhonda, V.D. Calhoun, P.J. Schreier and T. Adali

Multi-Task fMRI Data Fusion Using IVA and PARAFAC2

In Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. , no. , pp. 1466-1470, 2022
[3]

T. Hasija, M. Gölz, M. Muma, P.J. Schreier and A.M. Zoubir

Source Enumeration and Robust Voice Activity Detection in Wireless Acoustic Sensor Networks

In Proc. Asilomar Conf. on Signals, Systems, Computers, 2019
[4]

C. Lameiro, T. Hasija, T. Marrinan and P.J. Schreier

Estimating the Number of Correlated Components Based on Random Projections

In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5152-5156, 2019
[5]

T. Marrinan, T. Hasija, C. Lameiro and P. J. Schreier

Complete Model Selection in Multiset Canonical Correlation Analysis

In Proc. European Signal Process. Conf. (EUSIPCO), pp. 1082-1086, 2018
[6]

T. Hasija, Y. Song, P.J. Schreier and D. Ramírez

Bootstrap-based detection of the number of signals correlated across multiple data sets

In Proc. Asilomar Conf. Signals Syst. Computers, 2016
[7]

Y. Song, T. Hasija, P.J. Schreier and D. Ramírez

Determining the number of signals correlated across multiple data sets for small sample support

In Proc. Eur. Signal Process. Conf., 2016
[8]

T. Hasija, Y. Song, P.J. Schreier and D. Ramírez

Detecting the dimension of the subspace correlated across multiple data sets in the sample poor regime

In Proc. IEEE Work. Stat. Signal Process., 2016